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Abstract

A pseudospectral formulation of the three-dimensional Navier–Stokes equations in the cylindrical system of co-

ordinates is presented, which automatically includes the regularity conditions at the polar axis for the Fourier har-

monics. The mathematical system of equations is numerically implemented using standard methods for spatial

discretisation and time advancement. The method presented here for incompressible flows can be easily extended to

different set of equations and to different numerical schemes of various levels of accuracy. The formulation is applied to

the solution of incompressible three-dimensional entry jets in a circular duct.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Several realistic fluid flows present one preferable direction and develop compactly about one axis,
examples are numerous, from tube flows and jets to body wakes and vortex structures. The corresponding

mathematical systems are often naturally written in the cylindrical system of coordinates. The choice of

cylindrical coordinates, like any system that contains a symmetry axis, introduces singular terms in the

governing equation of the type r�n, being r the radial coordinate and n a positive exponent, typically n ¼ 1

and n ¼ 2, although the flow is continuous and regular at the axis.

A three-dimensional formulation of fluid flows in cylindrical coordinates requires the definition of ap-

propriate boundary conditions at r ¼ 0, notwithstanding the fact that it is not a physical boundary, that

would guarantee the regularity of the flow. In the case of axisymmetric flows, the singular behaviour is
simply cancelled by the symmetry condition at the axis. The strategy to deal with this difficulty in analytical

approaches is commonly that of discarding the singular solutions among all the admissible ones (e.g. using

the Bessel’s functions of the first kind, and discarding those of the second kind).
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Several approaches have been proposed to remove properly the singularities from the numerical solu-

tions in cylindrical coordinates, and well reproduce the behaviour close to the singular axis. A basic dis-

tinction must be made between finite-differences or finite-volume methods and methods that use a spectral
decomposition along the azimuthal (h) direction about the singular axis. In finite-volume or finite-differ-

ences methods, different approaches have proven successful [1–4], generally based on several rigorous

possibilities of avoiding the evaluation of some fluxes of the physical cell at r ¼ 0. Mohseni and Colonius [5]

eliminated the boundary at r ¼ 0 by mapping the ½0 2p� � ½0 R� polar domain into ½0 p� � ½�R R�.
The use of a spectral representation along the periodic coordinate h is often to be preferred for the

accurate solution of problems with simple geometry. In that case, the three-dimensional mathematical

problem is transformed into a number of coupled two-dimensional ones for the spectral harmonics, on the

meridian plane. However, each of such problems is characterised by singular terms whose degree of sin-
gularity grows with the harmonics. This is reflected by the number of regularity and boundary conditions

that must be satisfied at the singular axis to allow a well-posed problem [6–10].

A possible approach in a spectral framework is the use of further spectral (polynomial) expansions in the

radial direction too, using base functions that automatically satisfy the regularity conditions at r ¼ 0.

Chebyshev [11] and Jacobi polynomials have been used, also in conjunction with Legendre–Lagrangian

ones and B-splines expansions [12–14]. These techniques are in principle very accurate although not

commonly straightforward. On another side they cannot be easily generalised in other than the simplest

cylindrical domains and boundary conditions.
In spectral methods, regularity conditions for the azimuthal harmonics are typically derived in the

wavenumber space by using the properties at r ¼ 0 of the functions chosen to expand velocity and pressure

along the radial direction [9–12]. Pole conditions for Poisson-type equations in the physical space were

derived by Huang and Sloan [15], and then used as numerical boundary conditions in a pseudospectral

method. A different approach is introduced in [10], where the radial and azimuthal components of the

velocity are substituted by two complex functions (which are their linear combinations, see also [11]), these

are written in terms of the Cartesian velocities, and regularity conditions on the axis are derived using

Taylor series; the numerical solution is obtained using a spectral-Galerkin method for the spatial discret-
isation in the meridian plane. A similar approach was developed by Constantinescu and Lele [9], and

implemented in a finite-differences scheme to solve the equations at the singular axis. The Navier–Stokes

equations are recast, at r ¼ 0, by a set of equations for the coefficients of the radial Taylor expansions of the

variables, resulting in the solution of low-dimensional linear systems. Substitution of the dependent vari-

ables has been also used in [8], based on the asymptotic behaviour of analytic functions in the limit r ! 0;

the flow equations are discretised by using the Galerkin trigonometric approximation in azimuthal and

streamwise directions and the Chebyshev collocation technique in r; the numerical solution is based on the

influence matrix technique introduced in [6].
In the present work, a spectral formulation is proposed, following [7,9,10], where all the regularity

conditions at the polar axis for the Fourier harmonics are automatically included. These conditions are

satisfied by introducing a normalisation of each harmonics with powers of the radial distance, say rn, being
n an exponent related to the harmonic number. The normalised harmonics have simple boundary condi-

tions at the axis that automatically cancel the singular behaviour, similarly to what happens in the axi-

symmetric case. Such a normalisation allows writing a mathematically well-posed problem up to the

singular axis, while the boundary conditions far from the axis itself are simply rewritten. The new math-

ematical system, that is equivalent to the original one plus the regularity conditions, is a regular one. It can
be used in analytical studies and it is particularly useful in numerical solutions.

In the present numerical solutions centred finite differences are used in the meridian plane with second-

order accuracy, and an explicit fractional step method is employed. However, the numerical technique is

out of the scope of this article, because the approach described here is independent on the specific numerical

method adopted and it can be employed with higher order spatial schemes or implicit time advancements.



F. Domenichini, B. Baccani / Journal of Computational Physics 200 (2004) 177–191 179
The mathematical formulation and the numerical method are reported in Sections 2 and 3, respectively;

results of different test cases are discussed in Section 4, concluding remarks can be found in Section 5.
2. Spectral formulation of the Navier–Stokes equation in cylindrical coordinates

The vector dimensionless form of the incompressible Navier–Stokes equations can be written as

ov

ot
� v� x ¼ �r/� 1

Re
r� x; ð1aÞ
r � v ¼ 0: ð1bÞ

The vectors v and x are the velocity and vorticity, respectively. The scalar field / represents the irrotational

contribution to the flow, that is / ¼ p þ v2=2, where p is the dimensionless pressure field and v is the ve-

locity modulus. The parameter Re is the Reynolds number Re ¼ UL=m, where the physical scales U and L
depend on the specific problem under examination, and m is the kinematic viscosity of the fluid.

Consider the cylindrical system of coordinates fz; r; hg; the definition of the corresponding differential

operator in (1) can be found in [16]. The axisymmetric arrangement of the coordinate system suggests

expanding any variable in Fourier series along h as f ðz; r; h; tÞ ¼
P

fnðz; r; tÞeinh. Introduction of the Fourier
representations in equations (1) give the evolving equation for each harmonic. Whereas the equations will

be completed with the boundary-conditions appropriate for each specific problem, the treatment of the axis,

r ¼ 0, requires particular attention, because the condition of continuity of the variables and their deriva-

tives must be guaranteed by the spectral representation.

Following [9], the flow variables are expanded in Taylor series along the radial coordinate, giving the

polynomial expression of each harmonic of single-valued, vz and /, or multivalued variables, vr and vh. The
regularity conditions at r ¼ 0 for a single-valued function, say vz, can be written in compact form as [7,10]

okvzn
ork

¼ 0; n > 0; k ¼ 0; 1; . . . ; n� 1; ð2aÞ

in case of multivalued variables, e.g. vr, they read

okvrn
ork

¼ 0; n > 0; k ¼ 0; 1; . . . ; n� 2; n: ð2bÞ

The cases n < 0 follow from the complex conjugate relation with the positive harmonics. The case n ¼ 0

gives vz0 ¼ fz0ðr2Þ and vr0 � rfr0ðr2Þ.
Conditions (2) are a consequence of assuming that the solution is infinitely differentiable and that the

singular axis is a regular point of the Cartesian system of coordinates [7]. When all these conditions are not

properly included, the regularity of the solution is not guaranteed. The problem is commonly overcome in

analytical approaches by simply neglecting the solution that are divergent at the axis; in a numerical so-

lution small errors excite the unphysical terms that are divergent and eventually invalidate the calculation.

However, all constraints (2) cannot be imposed when solving the equations (1) that require only the
evaluation of the first and second order derivatives.

To overcome this difficulty, we define scaled variables that automatically behave correctly as r ! 0 and

implicitly satisfy the conditions (2), as follows. The scaled vector function g ¼ fgz; gr; ghg is introduced,

whose harmonics are related to those of the velocity field by (the time dependence is omitted for brevity)

vknðz; rÞ ¼ gknðz; rÞr nj j�1 n 6¼ 0; ð3aÞ
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where the subscript k means fz; r; hg, and n is the harmonic. The satisfaction of (2) then follows from the

conditions at r ¼ 0:

gzn ¼ 0;
ogrn
or

¼ oghn
or

¼ 0 n 6¼ 0; ð3bÞ

conditions (3b) give at the leading order gzn � ar, grn � bþ cr2, and ghn � ibþ dr2, where a, b, c, and d are

complex functions of z. It must be noticed that the coefficients of the radial and azimuthal components are

related in order to automatically satisfy the incompressibility at the axis. The present scaling is equivalent to

that proposed in [7] for the single-valued function vz, vzn ¼ fnðr2Þr nj j, when gzn � r. Following the same line,

a pseudo-potential Q is introduced

/nðz; rÞ ¼ Qnðz; rÞr nj j n 6¼ 0; ð4aÞ

with the condition

oQn

or
¼ 0 at r ¼ 0: ð4bÞ

A scaled-vorticity vector q is also used

xknðz; rÞ ¼ qknðz; rÞr nj j�2 n 6¼ 0; ð5aÞ

with pole conditions which automatically derive from those of the g field:

qkn ¼ 0 at r ¼ 0: ð5bÞ

The variable q can also be defined using the same scaling of the field (3a), varying consequently the con-

ditions at r ¼ 0. For the zeroth mode, the formulation in term of primitive variable is maintained.

The Navier–Stokes equation (1a) can be rewritten in terms of scaled variables as

ogzn
ot

þ NLzn ¼ � oðrQnÞ
oz

þ 1

Re
1

r
oqhn
or

�
þ ðn� 1Þ qhn

r2
� inqrn

r2

�
;

ogrn
ot

þ NLrn ¼ � oðrQnÞ
or

� ðn� 1ÞQn þ
1

Re
inqzn
r2

�
� 1

r
oqhn
oz

�
;

oghn
ot

þ NLhn ¼ �inQn þ
1

Re
1

r
oqrn
oz

�
� ðn� 2Þ qzn

r2
� 1

r
oqzn
or

�
; ð6Þ

where the NLrn term is

NLrn ¼
1

r2
X
m;j

mþj¼n

ðgznqhj � qznghjÞr mj j�mr jj j�j; ð7Þ

and analogous expressions hold for the other components. In (6), a formal gradient operator for the Q field

is introduced; an analogous divergence operator can be defined for g to impose the incompressibility (1b)

ðr � gÞn ¼
1

r
oðrgrnÞ
or

�
þ oðrgznÞ

oz
þ inghn þ ðn� 1Þgrn

�
¼ 0: ð8Þ

The set of equations (6)–(8) in terms of scaled variables, with boundary conditions (3b), (4b) and (5b) at

r ¼ 0, is equivalent to equations (1) with the high order boundary conditions (2).
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3. Numerical method

The mathematical formulation reported in Section 2 has been numerically implemented. In the meridian
plane, the flow equations are discretised on a face centred staggered grid with standard second order finite-

differences. The time advancement is performed with a fractional step method following the methodology

described in Verzicco and Orlandi [4], which computes the intermediate non-soleinodal field using the

current irrotational contribution. The intermediate field ĝ is obtained using a low-storage third-order

Runge–Kutta scheme [17]. Once the intermediate field ĝ is known, the mass conservation law is enforced

solving a Poisson-type equation for the correctionsFn of the pseudo-potential harmonics Qn. In term of the

discrete divergence and gradient operators, D and G respectively, we have:

Dĝn ¼ DGðFnðt þ DtÞÞ;
gknðt þ DtÞ ¼ ĝknðtÞ � GkðFnðt þ DtÞÞ;
Qnðt þ DtÞ ¼ QnðtÞ þFnðt þ DtÞ þ OðDt=ReÞ;

the subscripts n and k have the same meaning of those in equation (3a). It must be noticed that the evolving

equation (6) requires the evaluation of the scaled vorticity field q; therefore, the discrete curl operator C,
which is applied to g and gives the q field, is defined congruently to the discrete gradient operator G in order

to satisfy the differential identity CðGhÞ, where h is an arbitrary scalar field. The placement of the variables

within the computational cell is reported in Fig. 1.

The non-linear term (7) is evaluated with a direct convolution in the Fourier space or, alternatively, in
the physical domain using a zero-padding technique [18], giving indistinguishable results; the method is

selected to optimise the speed depending on the number of harmonics which are effectively solved. As an

example, if the computational cells in the meridian plane are ½Nz � Nr� ¼ ½160� 128�, and the solved har-

monics are Nh ¼ 8, the direct convolution in the Fourier space requires a CPU time typically equal to 0.08 s,

while evaluating the non-linear term in the physical space a CPU time of 0.15 s is needed. The FFT and

IFFT routines are internal functions of the MatLab� package, whose language have been used to write the

numerical code. Tests of the performances have been made on a PC with a 3.5 GHz processor and having 2

Gbs of RAM.
The boundary-conditions, that depend on the problem under consideration and that will be specified in

Section 4, are enforced during the time advancement of the governing equations (6); the component of the g

field normal to the boundaries is explicitly assigned on the computational points, while the condition on the

tangential ones, typically a zero normal derivative, are used to evolve the equations at the inner grid points
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Fig. 1. Sketch of the computational cell.
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with the standard methods used for staggered grid [17]. Neumann-type conditions imposed to solve the

Poisson problem for /n are rewritten in terms of the pseudopotential Qn.

The time step Dt is selected to satisfy the convective and diffusive stability criteria, resulting the latter the
more restrictive. The results presented in Section 4 to validate the numerical algorithm have been obtained

varying Dt between the values 2�9 and 2�10. In the case of the pulse entry jet in a cylindrical duct, depending

on the different scaling employed, the time step has been varied between 2�11 and 2�12.
4. Validation of the numerical algorithm

Preliminary tests have been performed to ensure that the normalising procedure does not alter the ac-
curacy of the numerical technique of solution used. To this aim, this approach is applied to a Poisson-type

problem on the unitary disk [15], that for the nth harmonic unðrÞ reads:

r2
d2un
dr2

þ r
dun
dr

� n2un ¼ r2fnðrÞ:

This equation has been solved in terms of the normalised variable gn using the second order scheme

employed in the three-dimensional code. Results show that the numerical solution has the same accuracy

thorough the domain and, as expected, it is not affected by the normalisation. In Fig. 2 we report the

relative error erelðNrÞ in a typical case: n ¼ 8, analytical solution un ¼ 2r8 þ r6 cosð3prÞ, unð1Þ ¼ 1; in this

case un ¼ gnr6, and dgn=dr ¼ 0 at r ¼ 0. The error, defined as the mean on the specified domain of the

absolute differences between numerical and analytical solutions normalised with the mean of the analytical
one, has been computed on the entire domain 0 < r6 1 and on its lower and upper halves, varying the

number of points Nr; the graphs show that the accuracy is second order.

The development of the mathematical formulation and of the numerical method has been stimulated by

the interest in several fluid problem of biological interest; typically, these are pulsatile flows in ducts and
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Fig. 2. Relative error between numerical and analytical solution of the Poisson equation on the unitary disk as a function of the

number of computational points Nr. Average error computed on the domains: (s) 0 < r < 1, (,) 0 < r < 0:5, (n) 0:5 < r < 1.



F. Domenichini, B. Baccani / Journal of Computational Physics 200 (2004) 177–191 183
chambers, such as the blood flow in the main vessels and in the heart cavity, with low/moderate values of an

opportunely defined Reynolds number (details about the physics can be found in Pedrizzetti [19], Baccani

et al. [20], Bolzon et al. [21]).
In what follows, we present some tests of validation of the proposed method, where flows in a cylindrical

duct with circular cross-section are studied; therefore, the Reynolds number in (1) is Re ¼ 2UR=m, being R the

radius of the tube, and U the axial velocity averaged over a cross-section. Following this scaling, the di-

mensionless discharge is Q ¼ p; in case of a time dependent forcing, such a value is referred to the peak value.

The system is forced by imposing an inlet profile to the axial velocity at a given section, say z ¼ 0; at the same

section, zero normal derivative is imposed to the radial and azimuthal components of the velocity, that is

ovr=oz ¼ ovh=oz at z ¼ 0. At the wall, r ¼ 1, the no-slip condition is imposed. At the outlet section, z ¼ H , the

axial derivative of the flow variables is set equal to zero, that is a uniform flow is assumed. All these conditions
are rewritten in terms of the scaled variables g and q. Different boundary-conditions can be considered to

simulate different physical problem, and/or to improve efficiency of the specific numerical resolution.

From a numerical point of view, a typical length of the computational domain in the z-direction is 10,

this value has been found to be sufficient not to influence the flow dynamics at z < 4; such a length can

probably be reduced by the use of more specific boundary-conditions at the outlet section, e.g. a radiative

one, to improve computational efficiency. A logarithmic stretching was used in the axial direction to ensure

a better resolution close to the inlet section. Also the grid in the z-direction has been stretched to capture the

boundary-layer growth and its interaction with the inner vorticity dynamics. Several tests have been per-
formed to define the grid resolution in the meridian plane, the results presented in what follows are ob-

tained with Nr ¼ 128 and Nz ¼ 160; the number of harmonics is Nh ¼ 8–12.

4.1 Test #1

A constant discharge Q ¼ p is assumed; the inlet velocity profile is given by a Poiseuille-type component

plus a contribution at the azimuthal wavenumber n ¼ 1

vzð0; r; hÞ ¼ 2ð1� r2Þ þ Aðr � r3Þ cos h; ð9Þ

a value A ¼ 2 has been used, so that the first derivative of the profile in the radial direction is equal to zero

at r ¼ 1 and h ¼ p. The flow is impulsively started from rest, and it is analysed varying the Reynolds

number in the range 500–1000. The problem formulation implies the presence of a plane of symmetry; given
the profile (9), the symmetry plane passes through h ¼ 0 and h ¼ p. On this plane, the only non-zero

component of the vorticity is xh, that defines the only non-zero contribution of the three-dimensional

vorticity stretching term x � rv when combined with ovh=oh. In what follows, the symmetry plane dynamics

is presented in terms of xy , y ¼ r cos h, to simplify the discussion (xy ¼ xh at h ¼ 0, xy ¼ �xh at h ¼ p).
The solution at t ¼ 3 is reported in Fig. 3, the Reynolds number is Re ¼ 103 . Far from the inlet, the

solution is that of an impulsively started flow in a tube, the flow is irrotational with the exception of the

uniform viscous-boundary layer developing at the wall. The xy forced by condition (9) at the inlet enters

into the duct for convective effect, giving the defaced field in Fig. 3(a), with the contemporarily development
of the other vorticity components. The distribution of the vorticity modulus at z ¼ 2:35 is reported in

Fig. 3(b). The results do not show any criticality of the flow solution near the axis r ¼ 0 that is a regular

point in the new formulation.
4.2 Test #2

The discharge Q ¼ p is impulsively started at t ¼ 0 and then maintained constant until t ¼ 1, afterwards

the flow is decelerated with an exponential decay, Q¼ pexpð1� tÞ in order to test the model during flow
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deceleration, an important issue in physiological flows, and the corresponding accelerated dissipation
phenomena. The zeroth mode of the entering velocity vz0 is assumed to be a blunt profile, that is constant

for r < r1 < 1, and with a parabolic tail to join the no-slip boundary condition at r ¼ 1; a contribution like

that in (9) is added to the first harmonic. The chosen parameter are r1 ¼ 0:4, A ¼ 0:5. The Reynolds number

has been varied between 500 and 3000.

At the inlet section, the central region of the duct is characterised by a zero azimuthal vorticity, being the

entering xh concentrated in a narrow region around r ’ 0:5. The first harmonic is responsible for the ec-

centricity of the axial velocity profile. As can be observed in Fig. 4(a), t ¼ 3 and Re ¼ 3000, the solution

evolves similarly to the case reported in Fig. 3; the xy distribution on the symmetry plane and the cross-
section of the vorticity modulus do not show any presence of the singular axis, giving a smooth solution in

the central region of the tube. The axial and radial components of the vorticity, as well as the velocity field,

present similar well-behaving distribution at all instants.

Additional tests have been performed. Using the same inlet profile, the flow is forced with turbulent-like

velocity distributions. At t ¼ 0, the lower harmonics of the g field, n ¼ 0; 1; 2, are forced with random dis-

tributions, with values in the range 0–1; boundary conditions are imposed, and incompressibility is enforced

with the same numerical procedure used during all the simulations. In this caseNh ¼ 16 harmonics are solved.

In Fig. 5, we report thexy distributions close to the inlet section. At t ¼ 0, the vorticity field shows some signs
of symmetry with respect to the central axis, due to the contributions of the forced lower harmonics, Fig. 5(a).

During the following evolution, shown in Fig. 5(b)–(d), the trace of such an initial forcing progressively

disappears. While the viscous boundary-layer develops at the wall, and the inlet regular vorticity enters the

duct, the energy of the forced random field is transferred to the higher harmonics by the non-linear inter-

action, and it is slowly dissipating. The vorticity field pictures show how this complex evolution progresses

without presenting any criticality in the whole domain including across the singular axis.
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4.3 Pulsed entry jet in a cylindrical duct

According to the physical problems which stimulated this study, the described method has been applied
to the analysis of a pulsatile jet in a tube, a simplified model for the strongly accelerated flows in the heart

chambers and in the main arterial vessels (diastolic phase for the mitral valve, or systolic for the aortic

valve, for example, see [19–21] for references). In this context, a different dimensionless formulation is

suggested by the physics itself. The natural time scale is the heartbeat period T , therefore the pulse jet has a
duration approximately equal to half period, and the instant corresponding to the maximum flow rate is

fixed here at t ¼ 0:1. A velocity scale U0 can be defined as the peak velocity averaged on the inlet cross

section. All the variables can be made dimensionless according to these scales, and a Reynolds number is

therefore defined as ReT ¼ U 2
0 T=m. The dimensionless time profile of QðtÞ is represented by the function

QðtÞ ¼ At2 expð�ftÞ; ð10Þ

that models the pulsatile flow of typical clinical data; f ¼ 20 is the characteristic frequency of the decel-

eration, and the factor A ¼ 0:385 scales the total discharge [20]. The following blunt velocity profile vz is
assigned at the inlet:

vzð0; r; hÞ ¼ CðtÞe
� ðr cos h�eÞ2þðr sin hÞ2

r2

� �6

; ð11Þ

e is the eccentricity of the profile, r controls its steepness, C is the normalisation coefficient to agree with the

integral (10).
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Fig. 6. Pulsatile flow, t ¼ 0:5, xy on the symmetry plane. (a) ReT ¼ 5� 103, (b) ReT ¼ 104, (c) ReT ¼ 2� 104. Levels from )60 to 60,

step 4, positive values black, negative values grey.
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The Fourier representation of the profile (11) defines the inlet forcing gznð0; r; tÞ, zero normal derivative is

imposed to the radial and azimuthal components of g. As z ! 1, the flow is assumed to be uniform in the z-
direction.At the ductwall r ¼ R, the boundary condition reads gðz;R; tÞ ¼ 0.At t ¼ 0 the flow starts from rest.

The problem has been analysed varying ReT in the range [5 · 103–2.5 · 104], corresponding to a standard

Reynolds number 2U0R�=m ’ 150–750. The parameter r in Eq. (11) is fixed r ¼ 2R=3; the eccentricity has

been varied in the range e ¼ ½0:05R–0:2R�.
The flow field changes to an increasingly three-dimensional pattern at growing values of eccentricity. For

e ¼ 0:05R the flow is almost axisymmetric, when eccentricity is increased to e ¼ 0:1R and e ¼ 0:2R the non-

symmetry increases accordingly, without showing the appearance of qualitative differences, in agreement

with previous observation under similar conditions [21].
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In Fig. 6, the vorticity distributions on the symmetry plane are reported at t ¼ 0:5, e ¼ 0:2R, for the three
values of ReT ¼ ½5; 10; 20� � 103; the results have been obtained fixing Nh ¼ 8. At this stage of the evolution,

the symmetry plane vorticity shows the complete lack of axial symmetry of the solution. A weak detached
vortex can be observed in the left portion of each picture, while a more intense interaction between the

entering vorticity and the boundary-layer one appears on the right side. More intense vortex structures are

related to the higher value of ReT , Fig. 6(c); in this case small oscillations of the solution are related to the

limited azimuthal resolution, being Nh ¼ 8.

The flow evolution at ReT ¼ 20� 103, is reported in Fig. 7, as solved with an increased number of

harmonics Nh ¼ 12. During the initial stage of motion, the entry flow develops an eccentric vortex structure,

Fig. 7(a) at t ¼ 0:125, the remaining part of the flow is irrotational, with the exception of the viscous

boundary-layer at the wall. During the following evolution, the vortex structure grows in size and induces
an opposite sign vorticity layer at the wall, Fig. 7(b) at t ¼ 0:25. Afterwards, the main vorticity structure

tends to roll-up; the left portion, h ¼ p, moves toward the centre of the tube, while the right one strongly

interacts with the boundary-layer, inducing its separation from the wall surface, and thus forming a three-

layer vorticity distribution close to the inlet section, Fig. 7(c) at t ¼ 0:375. The final stage of the evolution

here reported is characterised by the detachment of the vortex structure; its left part crosses the duct

centreline, the right one remains attached to the wall lifting-up the opposite sign vorticity, Fig. 7(d) at

t ¼ 0:5. The comparison between the cases Nh ¼ 8 and Nh ¼ 12 gives about identical solutions up to the

final stage where (compare Fig. 6(c) and Fig. 7(d)) some fictitious oscillations found at Nh ¼ 8, due to the
sum-up of energy at the highest modes, are cleared-out in the Nh ¼ 12 solution although the main features

of the flow are unchanged.

A different description of the flow evolution is given in Fig. 8, where the secondary flows at z ’ 0:5 are

reported, at the same instants of those of Fig. 7; the computed velocities have been interpolated on a coarse

Cartesian grid to better visualise the flow pattern. Until the vortex structure is confined close to the inlet

section, the secondary flow is that of a diverging irrotational jet, which tends to occupy the whole cross-

section, Fig. 8(a). When the vortex structure develops, it becomes a sort of inclined vortex ring, and its
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Fig. 8. Pulsatile flow ReT ¼ 2� 104, secondary flow at z ’ 0:5R. (a) t ¼ 0:125, (b) t ¼ 0:25, (c) t ¼ 0:375, (d) t ¼ 0:5.



Fig. 9. Pulsatile flow ReT ¼ 2� 104, isosurfaces of the vorticity modulus. (a) t ¼ 0:125, (b) t ¼ 0:25, (c) t ¼ 0:375, (d) t ¼ 0:5. Value:

30.
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geometry induces significant vorticity components along z and r directions [21]. The appearance of xz is

represented by the formation of secondary recirculating cells, Fig. 8(b) and (c), whose growth in size and

intensity induces an evident transversal flow (from left to right) localised in the vicinity of the symmetry
plane, Fig. 8(d). The cross-sectional flow helps in clarifying the transversal motion of the left portion of the

vortex structure, described in Fig. 7.

A global view of the wake structure is given in Fig. 9, where the isosurfaces of the vorticity modulus are

reported. This description gives a feeling of the three-dimensional evolution of the vorticity field. Initially,

the wake is an almost circular vortex ring, dominated by the azimuthal vorticity, Fig. 9(a) at t ¼ 0:125.
Afterwards, the ring deforms and interacts with the wall boundary-layer (a discussion about the wake-

boundary layer reconnection can be found in [21]), Fig. 9(b), t ¼ 0:25. In Fig. 9(c) and (d), t ¼ 0:375 and

t ¼ 0:5, a completely three-dimensional vorticity field develops, where the central portion of the flow field
becomes dominated by the longitudinal component of the vorticity, xz, responsible of the secondary cir-

culation described above.

In order the verify the spectral convergence of the solution, we report in Fig. 10 the kinetic energy

associated with each single azimuthal mode n, En, where,

En ¼ p
Z H

0

Z R

0

vn � v�nrdzdr; ð12Þ
and the asterisk stands for complex conjugate [10]. Such a quantity is computed at eight instants of time,
from t ¼ 0:0625 to t ¼ 0:5, interval t ¼ 0:0625. At this highest value of ReT , during the final stage of

computation the solution begins to suffer the limitation of the azimuthal resolution, therefore the evolution

for t > 0:5 is not reported; on the other side, Nh ¼ 12 appears sufficient to capture the large part of the

details of the solution for t < 0:5, which has been discussed above.
5. Conclusions

The spectral formulation of the Navier–Stokes equations written in the cylindrical system of coordinates

requires a number of regularity constraints at the singular axis r ¼ 0 that cannot be accounted directly in

the solution. The introduction of an appropriate scaling for the harmonics of the primitive variables

permits to formulate a mathematical system that is well-posed on the scaled variables and automatically

satisfies the regularity conditions at the singular axis. This regularised formulation of the Navier–Stokes

equations is of general applicability, however it is particularly useful in the numerical solution of the three-

dimensional flow equations in an axisymmetric system of coordinates.

The proposed methodology has been implemented using standard numerical techniques for the spatial
and temporal resolution of the equations, in the framework of the spectral/pseudospectral methods.

However, the proposed method is independent on its numerical realisation.

Several tests have been performed to prove the ability of the method to solve the flow equations at the

singular axis; the system has been typically forced with the lower azimuthal wavenumbers, thus allowing to

solve a reduced number of harmonics. Such tests have shown that the solutions behave well close to the

singular axis. Afterwards, and as an additional test, the method has been applied to the pulsed entry-jet

problem, that is a model for the moderate Reynolds number flows of biological interest, that stimulated the

present work. In presence of an eccentric inlet profile, the flow evolution changes from an axisymmetric
picture, with a wake vortex sheet possibly detaching to form few vortex rings [19,20], to a fully three-

dimensional one.
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Results have confirmed the ability of the proposed method to solve the flow about r ¼ 0, in fact the

singular axis is a regular point in the new formulation. The solution automatically satisfies the regularity

conditions at the axis and it is not critical (or it is critical like any boundary) about r ¼ 0.
The present method can be easily extended to different systems of coordinates having a polar axis, and

the same approach can also be applied to solve different mathematical problems. In such a perspective, it is

currently being applied to analyse the three-dimensional flow in a prolate-spheroidal moving cavity, a

model for the left ventricular chamber (see [21] and references therein for details).
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